FMRP regulates an ethanol-dependent shift in GABABR function and expression with rapid antidepressant properties

نویسندگان

  • Sarah A. Wolfe
  • Emily R. Workman
  • Chelcie F. Heaney
  • Farr Niere
  • Sanjeev Namjoshi
  • Luisa P. Cacheaux
  • Sean P. Farris
  • Michael R. Drew
  • Boris V. Zemelman
  • R. Adron Harris
  • Kimberly F. Raab-Graham
چکیده

Alcohol promotes lasting neuroadaptive changes that may provide relief from depressive symptoms, often referred to as the self-medication hypothesis. However, the molecular/synaptic pathways that are shared by alcohol and antidepressants are unknown. In the current study, acute exposure to ethanol produced lasting antidepressant and anxiolytic behaviours. To understand the functional basis of these behaviours, we examined a molecular pathway that is activated by rapid antidepressants. Ethanol, like rapid antidepressants, alters γ-aminobutyric acid type B receptor (GABABR) expression and signalling, to increase dendritic calcium. Furthermore, new GABABRs are synthesized in response to ethanol treatment, requiring fragile-X mental retardation protein (FMRP). Ethanol-dependent changes in GABABR expression, dendritic signalling, and antidepressant efficacy are absent in Fmr1-knockout (KO) mice. These findings indicate that FMRP is an important regulator of protein synthesis following alcohol exposure, providing a molecular basis for the antidepressant efficacy of acute ethanol exposure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mTORC1-dependent protein synthesis underlying rapid antidepressant effect requires GABABR signaling.

Administration of N-methyl-D-aspartate receptors (NMDAR) antagonists initiates a rapid anti-depressant response requiring mammalian Target of Rapamycin Complex 1 (mTORC1) kinase; however the molecular mechanism is unknown. We have determined that upon NMDAR blockade, dendritic γ-amino-butyric acid B receptors (GABABR) facilitate dendritic calcium entry. The GABABR-mediated increase in calcium s...

متن کامل

KCTD12 modulation of GABA(B) receptor function

The molecular composition and functional diversity of native GABAB receptors (GABABR) are still poorly understood, thus hindering development of selective GABABR ligands. Potassium channel tetramerization domain-containing protein (KCTD) 12 is a GABABR auxiliary subunit and mouse KCTD12 can alter GABABR function. In this study, we sought to characterize the effects of human KCTD12 on GABABR kin...

متن کامل

Visual experience regulates transient expression and dendritic localization of fragile X mental retardation protein.

Fragile X syndrome is the most common form of inherited mental retardation and is caused by the loss of function of the Fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein thought to play a key role in protein synthesis-dependent synaptic plasticity. The regulation of FMRP expression itself is also likely to be an important control point in this process. Here we used dar...

متن کامل

Evaluation of the Effect of Aqueous Extract of Olibanum on the Expression of FMR1 and MAP1B Genes in the Rat Hippocampus

Introduction: The therapeutic properties of Olibanum have been considered in traditional medicine since ages past. Recent studies indicated the effect of Olibanum on memory enhancement and prevention/treatment of Alzheimer's disease. Fragile X mental retardation protein is the product of the FMR1 gene that mediates memory formation through the development of communications between nerve cells. ...

متن کامل

Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse.

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss-of-function of fragile X mental retardation protein (FMRP). The loss of FMRP function in neurons abolishes its suppression on mGluR1/5-dependent dendritic protein translation, enhancing mGluR1/5-dependent synaptic plasticity and other disease phenotypes in FXS. In this study, we describe a new activation function of FM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016